Sieve Inference on Semi-Nonparametric Time Series Models
نویسندگان
چکیده
منابع مشابه
Sieve Inference on Possibly Misspecified Semi-nonparametric Time Series Models∗
This paper first establishes the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi-nonparametric time series models. We show that, even when the sieve score process is not a martingale difference, the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals are the same as those for independent da...
متن کاملSIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...
متن کاملLarge Sample Sieve Estimation of Semi-Nonparametric Models∗
Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; semi-nonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion functi...
متن کاملSimultaneous Nonparametric Inference of Time Series
We consider kernel estimation of marginal densities and regression functions of stationary processes. It is shown that for a wide class of time series, with proper centering and scaling, the maximum deviations of kernel density and regression estimates are asymptotically Gumbel. Our results substantially generalize earlier ones which were obtained under independence or beta mixing assumptions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2012
ISSN: 1556-5068
DOI: 10.2139/ssrn.2008720